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Abstract-An exact solution of the coupled heat and mass transfer in a porous medium with evaporation 
is given. The governing partial differential equations are transformed to ordinary differential equations 
by use of Boltzmann transformation of variables. Evaporation thickness is proportional to the square 
root of time, where the proportional constant I is obtained from an equation which contains tabulated 

functions only. Effects of nondimensional parameters on evaporation speed are briefly discussed. 

NOMENCLATURE change problems exist when the surface temperatures 

moisture diffusivity; are fixed [l-3]. Recently Gupta [4] presented an 

thermal diffusivity; approximate solution to a coupled heat- and mass- 

specific mass capacity; transfer problem involving evaporation. His solution 

specific heat capacity; was obtained by the local potential method, and was 

thermal conductivity; compared to another approximate solution obtained 

Kossovitch number defined by equation (16); by the integral technique [S]. The problem Gupta [4] 

latent heat of evaporation of liquid per unit treated has analytical solution, which is presented in 

mass; this paper. 

Luikov number defined by equation (15); 
position of evaporation front; 
temperature; 
temperature at surface x = 0; 
nondimensional temperature defined by 
equation (12); 

2. STATEMENTS OF THE PROBLEM AND THE SOLUTION 

space coordinate. 

The problem studied here is the same as that of [4]. 
A semi-infinite porous medium is dried by maintaining 
the surface at a constant temperature t, above the 
evaporation point. Initially, the whole body is at a 
uniform temperature to and uniform moisture potential 
6,, . The moisture is assumed to evaporate completely 
at a constant temperature, evaporation point t,. It is 
also assumed that the moisture potential in the first 
region, 0 < x < s(7), is constant at 8,,, where x = s(7) 

locates the evaporation front. It is further assumed that 
the moisture in vapor form does not take away any 
appreciable amount of heat from the system. Neglecting 
mass diffusion due to temperature variation, the prob- 
lem can be expressed as 

Greek symbols 

coefficient of internal evaporation; 
dimensionless variable defined by 
equation (13); 
mass-transfer potential; 
nondimensional mass-transfer potential 
defined by equation (11); 
dimensionless constant defined by 
equation (19); 
nondimensional latent heat of evaporation 
defined by equation (17); 
density of moisture; 
density of porous medium; 
time. 

Subscripts 

v, vaporizing state; 

1, first region, 0 c x c s(7); 

2, second region, x < s(7); 

21, ratio of properties of region 2 to region 1. 

1. INTRODUCTION 

HEAT-CONDUCTION problems involving melting, freez- 
ing, or evaporation have wide applications in foundry, 
welding, food technology, etc. Due to the inherent 
nonlinearity of the problem, few exact solutions are 
known. Similarity type exact solutions to the phase 

at, a2t1 
z=aq,x,, 0 < x < s(7), 7 > 0 (1) 

et = 6”, 0 < x < s(z), 7 > 0 (2) 

at, a2t2 &L~, ae, 
~=%ax’+y--;iT x > s(7), 7 > 0 (3) 

ae2 a2e2 
x=4=, x > s(7), 7 > 0. (4) 

The initial and the boundary conditions are 

tl=t, at x=0, t>O 

t = to at t=O, x>O 

0=& at 7=0, x>O 

tl = t2 = t, at x = s(7) 

611 = f32 = 0, at x = s(7) 

(5) 

(6) 

(7) 

(8) 

(9) 

kl$-kzg= -(1-c)p,,,Lz at x=s(7). (10) 

1139 



1140 SUNG HWAN CHO 

Symbols are given in the nomenclature. Let 

t,--to 
T, = - 

t,--to 

Lu = am 
% 

Ko = LC,(~“--00) 
c&--o) 

v= 
u-4PmL~q 
k,(ts-to) 

kz, = kzlk, 

and assume 

s(r) = 2J, J&r) 

(11) 

(14 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

where I is a constant to be determined later. Assuming 
T and 0 are functions of q only, equations (l)-(4) are 
transformed to nondimensional ordinary differential 
equations. 

-+245-o, O<?/<l 
d2TI 

dtl* drt 
(20) 

Or=l, 0<1<1 (21) 

,+2t+-2EKor+= 0, fj > 1 
d2T2 

dtl dtl drl 
(22) 

Lu d2@2 
YQ- 

+2r+=o, q>1. 
dq 

(23) 

The boundary conditions (5)-(10) become 

T,=l at q=O 

T2=0 as q+oo 

02=0 as I]-+CO 

Or = O2 = 1 at r) = 1 

Tl = T2 = T, at 9 = 1 

(24) 

(25) 

(26) 

(27) 

(28) 

dTr 
%-k2r$= -2~1. (29) 

Solutions of equations (20) and (23) which satisfy 
boundary conditions (24), (27), and (28) are easily 
obtained. 

et-f(n) 
T, = 1-(1-T,)- 

erf(l) ’ 
O<q<l (30) 

where 

erfc(x) = 1 -erf(x) = 1 Jo Xa e-“dz. 
s 

(32) 

Substituting equation (31) into equation (22), and 
solving the resulting unhomogeneous ordinary differ- 
ential equation with boundary conditions (25) and (28), 
one obtains 

+ T erfc(v) 
“erfco’ 

q > 1 (33a) 

when Lu # 1, and 

EKO 

T2 = erfc(l)Jrr 

+ T erfc(tl) 
“&ii@ 9 > I (33b) 

whenLu=l. 
Equations (30), (31), and (33) satisfy all the boundary 

conditions except (29). Substituting equations (30) and 
(33) into equation (29), the constant 1 is determined 
from 

(f--T,) kzr Tv EKok2, Lu 

e’Z-e”‘+ (Lu-1) 

1 1 1 
\ 

___- 
’ e”‘erfc(ll) (JLu)e”“herfc(I/JLu) i 

when Lu # 1, and 
= (Jn)vI (34a) 

U-T,) &IT, cKokZl 
II -y+ 
e. erf(l) e”-erfc(l) 2e”‘erfc(l) 

= (,/n)v1 (34b) 

when Lu = 1 

3. DISCUSSION AND CONCLUSIONS 

An exact solution to a coupled heat- and mass-transfer 
problem involving evaporation is obtained. If the 
constant 1 is determined from equation (34), the tem- 
perature and moisture distributions are determined 
from equations (30), (31), and (33), and evaporation 
thickness is determined from equation (19). 

While the approximate solutions of Gupta [4] re- 
quire to solve three equations for three unknowns, the 
exact solution obtained in this paper involves only one 
equation to determine the constant 1. 

Functions e”‘erf(l) and e’:‘erfc(l) which appear in 
equation (34) are tabulated in [l]. A simple approxi- 
mate equation to compute e”‘erfc(1) with errors less 
than lo-* for 0 < A < 10 is also given in [6]. 

Some results of sample calculations of equation (34) 
are given in Figs. 1-4. They show that a larger heat 
of evaporation v gives smaller 1 and thus slower 
evaporation. Figure 2 shows the effect of TV on evap- 
oration speed; smaller T, results in faster evaporation. 
Figure 2 shows faster evaporation when the ratio of 
thermal conductivity of undried region to that of the 
dried region kzl is higher. Figure 3 indicates that for 
larger EKO faster drying is obtained for given con- 
ditions. Figure 4 shows that larger Luikov number 
results in faster evaporation. The effect of Luikov 
number, however, is usually small. 
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FIG. 1. Solution of equation (34): effect of evaporation temperature. 
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FIG. 2. Solution of equation (34): effect of conductivity ratio. 
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FIG. 3. Solution of equation (34): effect of EKO. 
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FIG. 4. Solution of equation (34): effect of Luikov number. 1141 
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UNE SOLUTION EXACTE DU PROBLEME DE CHANGEMENT 
DE PHASE COUPLE EN MILIEU POREUX 

R&m&Une solution exacte est donn& au transfert coup16 de chaleur et de masse dans un milieu 
poreux avec &aporation. Les huations aux d&iv&es partielles fondamentales sont transform&s en 
kquations diffbrentielles ordinaires par une transformation de Boltzmann sur les variables. L’Cpaisseur 
d’tvaporation est proportionnelle & la racine car&e du temps avec une constante de proportionnalitt I, 
obtenue par une kquation qui contient uniquement des fonctions tabulbs. L’influence des paramktres 

adimensionnels sur les vitesses d’&aporation est brihvement discutk. 

EINE EXAKTE LOSUNG DES GEKOPPELTEN PHASENANDERUNGSPROBLEMS 
IN EINEM PORC)SEN MEDIUM 

Zusammenfassuog-Eine exakte LGsung der gekoppelten Wlirme- und Stoffiibertragung mit Verdampfung 
in einem porasen Medium wird angegeben. Die giiltigen partiellen Differentialgleichungen werden durch 
Anwendung der Boltzmanntransformation der Variablen in gewahnliche Differentialgleichungen iiber- 
geftihrt. Die Verdampfungsstlrke ist der Quadratwurzel aus der Zeit proportional, wobei der Pro- 
portionalit8tsfaktor sich aus einer Gleichung ergibt, die nur vertafelte Funktionen enthllt. Der EinfluD 

dimensionsloser Parameter auf die Verdampfungsgeschwindigkeit wird kurz diskutiert. 

TOYHOE PEIJIEHME 3AAAYI4 CO CJ-IO~HLIM rPA30BbIM 06MEHOM 
B I-IOPMCTOti CPEAE 

hllOTaUHn--~pctBOAHTCR TOYHOC pCUICHHC 3aAaW4 CJlOXCHOrO TWJIO- W MaCCOO6MCHa B IIOpHCTOfi 

cpene np~ HanliqAA AcnapeHHn XWAKOCTH x3 nOp. c IIOMOlUbFO ITpCO6pa3OBaHHn ITCpCMCHHblX 

EaJIbUMaHa OlTpCAWlSlloIUHe AH+$CpeHUWlbHbIe ypaBHCHtiX B 'IaCTHblX lTpOW3BOAHblX nptm6pasy- 

IOTCII B 06bl'fHblC AFi+@epCHUHaJIbHble ypaBHCHEi% TonuuiHa 30HbI HCllaPeHHSl lTpOIlOpU~OH~bHEi 

KOPH~~ KBaApaTHOMyB~MeH~,rAeK03~~WUHCHTnpOnOPUHOH~bHOCTHhnOAyYaloT113ypaBHCHBR, 
coAepx(aurero JIHUJb &HKUWW, ITpHBCAeHHble B Ta6mUe. BKpaTUe PaCCMaTpHBaeTCSl BJlAIiHAe 

6espa3MepHbIX IlapaMeTpOB HaCKOpOCTb HCllapeHHR. 


